代表性论文专著
在燃料电池相关领域发表SCI论文100余篇,引用3700余次 (google scholar),h-index: 36,2篇入选ESI热点论文,5篇入选ESI高被引论文,出版英文专著1章。
2024:
[35] Congfan Zhao, Shu Yuan, Xiaojing Cheng, Shuiyun Shen, Ninghua Zhan, Rui Wu, Xiaohan Mei, Qian Wang, Lu An, Xiaohui Yan*, Junliang Zhang*, Agglomerate Engineering to Boost PEM Water Electrolyzer Performance, Advanced Energy Materials, in press.
[34] Lizhen Wu, Zhefei Pan, Shu Yuan, Xiaoyu Huo, Qiang Zheng*, Xiaohui Yan*, Liang An*, Optimization of dual-layer flow field in a water electrolyzer using a data-driven surrogate model, Energy and AI, 18, 2024, 100411.
[33] Xiaohui Yan, Jiazhen Li, Shu Yuan, Congfan Zhao, Cehuang Fu, Shuiyun Shen, Jiewei Yin, Junliang Zhang*, Influence and Improvement of Membrane Electrode Assembly Fabrication Methods for Proton Exchange Membrane Water Electrolysis, Journal of The Electrochemical Society, 171, 2024, 064504.
[32] Shu Yuan, Congfan Zhao, Liuxuan Luo, Cehuang Fu, Huiyuan Li, Lu An, Xiaojing Cheng, Shuiyun Shen, Jiewei Yin, Xiaohui Yan*, Junliang Zhang*, Revealing the Role of Ionomer at the Triple-Phase Boundary in PEM Water Electrolyzer, The Journal of Physical Chemistry Letters, 15, 2024, 5223–5230.
[31] Shu Yuan, Congfan Zhao, Cehuang Fu, Jiazhen Li, Yongjian Su, Rui Xue, Shuiyun Shen, Jiewei Yin, Xiaohui Yan*, Junliang Zhang*, Discovery of Bubble Accumulation Behavior in Catalyst Layer of Proton Exchange Membrane Water Electrolyzer, International Journal of Heat and Mass Transfer, 227, 2024, 125552.
[30] Shu Yuan, Congfan Zhao, Huiyuan Li, Shuiyun Shen, Xiaohui Yan*, Junliang Zhang*, Rational design of electrode for low cost proton exchange membrane water electrolyzer, Cell Reports Physical Science, 5, 2024, 101880. (Invited Perspective)
[29] Yongjian Su, Xiaojing Cheng, Yong Feng, Huiyuan Li, Cheng Yan, Miaomiao He, Liuxuan Luo, Shuiyun Shen, Xiaohui Yan*, Junliang Zhang*, Hierarchical Catalyst Layer Structure for Enhancing Local Oxygen Transport in Low Pt Proton Exchange Membrane Fuel Cells, Journal of Power Sources, 603, 2024, 234453.
[28] Jiabin You, Huiyuan Li, Yong Feng, Xiaojing Cheng, Liuxuan Luo, Daihui Yang, Guanghua Wei, Shuiyun Shen, Xiaohui Yan*, Junliang Zhang*, Insight into oxygen diffusion mechanism in ionomer film on catalyst surface with varying perfluorosulfonic acid and water contents, Journal of Materials Chemistry A, 12, 2024, 7248.
[27] Lizhen Wu, Zhefei Pan*, Shu Yuan, Xingyi Shi, Yun Liu, Fatang Liu, Xiaohui Yan*, Liang An*, A dual-layer flow field design capable of enhancing bubble self-pumping and its application in water electrolyzer, Chemical Engineering Journal, 488, 2024, 151000.
2023:
[26] Shu Yuan, Congfan Zhao, Xiyang Cai, Lu An, Shuiyun Shen, Xiaohui Yan*, Junliang Zhang*, Bubble evolution and transport in PEM water electrolysis: Mechanism, Impact, and Management, Progress in Energy and Combustion Science, 96, 2023, 101075. (ESI热点论文、高被引论文)
[25] Congfan Zhao, Shu Yuan, Xiaojing Cheng, Lu An, Jiazhen Li, Shuiyun Shen, Jiewei Yin, Xiaohui Yan*, Junliang Zhang*, Effect of PFSA Ionomer in Anode Catalyst Layer on PEM Water Electrolyzer Performance, Journal of Power Sources, 580, 2023, 233413.
[24] Shu Yuan, Congfan Zhao, Xiaohan Mei, Shuiyun Shen, Qian Wang, Xiaohui Yan*, Junliang Zhang*, Bubble Management in PEM Water Electrolysis via Imprinting Patterned Grooves on Catalyst Layer, International Journal of Heat and Mass Transfer, 212, 2023, 124249.
[23] Jiabin You, Zhifeng Zheng, Xiaojing Cheng, Huiyuan Li, Cehuang Fu, Liuxuan Luo, Guanghua Wei, Shuiyun Shen, Xiaohui Yan*, Junliang Zhang*, Insight into Oxygen Transport in Solid and High Surface Area Carbon Supports of Proton Exchange Membrane Fuel Cells, ACS Applied Materials & Interfaces, 15, 2023, 21457.
[22] Zhiling Xu, Shu Yuan, Lu An, Shuiyun Shen, Qian Xu, Xiaohui Yan*, Junliang Zhang*, Effect of Substrate Surface Charges on Proton Conduction of Ultrathin Nafion Films, ACS Applied Materials & Interfaces, 15, 2023, 10735.
[21] Congfan Zhao, Shu Yuan, Xiaojing Cheng, Zhifeng Zheng, Jia Liu, Jiewei Yin, Shuiyun Shen, Xiaohui Yan*, Junliang Zhang*, The effect of catalyst layer design on catalyst utilization in PEMFC studied via stochastic reconstruction method, Energy and AI, 13, 2023, 100245.
[20] Shiqing Liu, Shu Yuan, Yuwei Liang, Huiyuan Li, Zhiling Xu, Qian Xu, Jiewei Yin, Shuiyun Shen, Xiaohui Yan*, Junliang Zhang, Engineering the Catalyst Layers towards Enhanced Local Oxygen Transport of Low-Pt Proton Exchange Membrane Fuel Cells: Materials, Designs, and Methods, International Journal of Hydrogen Energy, 48, 2023: 4389.
2022:
[19] Xiaohui Yan, Zhiling Xu, Shu Yuan, Aidi Han, Yuanting Shen, Xiaojing Cheng, Yuwei Liang, Shuiyun Shen*, Junliang Zhang, Structural and Transport Properties of Ultrathin Perfluorosulfonic Acid Ionomer Film in Proton Exchange Membrane Fuel Cell Catalyst Layer: A Review, Journal of Power Sources, 536, 2022: 231523.
[18] Yuanting Shen, Xiaohui Yan*, Liang An, Shuiyun Shen, Lu An, Junliang Zhang*, Portable Proton Exchange Membrane Fuel Cell Using Polyoxometalates as Multi-functional Hydrogen Carrier, Applied Energy, 313, 2022: 118781.
[17] Shuiyun Shen, Lin Li, Cehuang Fu, Guanghua Wei, Xiaojing Cheng, Jiewei Yin, Xiaohui Yan*, Gang Wu, Junliang Zhang*, A Facile Strategy to Boost the Active Sites of Fe-N-C Electrocatalyst for the Oxygen Reduction Reaction, Journal of The Electrochemical Society, 169, 2022: 034506.
2021:
[16] Xiaohui Yan, Yimeng Peng, Yuanting Shen, Shuiyun Shen, Guanghua Wei, Jiewei Yin, Junliang Zhang*, The use of phase-change cooling strategy in proton exchange membrane fuel cells: a numerical study, Science China Technological Sciences, 64, 2021: 2762–2770.
[15] Yimeng Peng, Xiaohui Yan*, Chen Lin, Shuiyun Shen, Jiewei Yin, Junliang Zhang*, Effects of flow field on thermal management in proton exchange membrane fuel cell stacks: a numerical study. International Journal of Energy Research, 45, 2021: 7617-7630.
2020:
[14] X.H. Yan, X.L. Li, C.H. Fu, C. Lin, H.M. Hu, S.Y. Shen, G.H. Wei, J.L. Zhang*, Large Specific Surface Area S-doped Fe–N–C Electrocatalysts Derived from Metal–Organic Frameworks for Oxygen Reduction Reaction. Progress in Natural Science: Materials International, 30, 2020: 896-904.
[13] X.H. Yan, H.Z. Li, C. Lin, J.R. Chen, A.D. Han, S.Y. Shen, J.L. Zhang*, An inorganic-framework proton exchange membrane for direct methanol fuel cells with increased energy density. Sustainable Energy & Fuels, 4, 2020: 772-778.
[12] X.H. Yan, C. Lin, Z.F. Zheng, J.R. Chen, G.H. Wei, J.L. Zhang*, Effect of clamping pressure on liquid-cooled PEMFC stack performance considering inhomogeneous gas diffusion layer compression. Applied Energy, 258, 2020: 114073-114086.
2019:
[11] X.H. Yan, C. Guan, Y. Zhang, K.C. Jiang, G.H. Wei, X.J. Cheng, S.Y. Shen, J.L. Zhang*, Flow field design with 3D geometry for proton exchange membrane fuel cells. Applied Thermal Engineering, 147, 2019: 1107-1114.
2018:
[10] X.H. Yan, X.L. Zhou, T.S. Zhao*, H.R. Jiang, L. Zeng, A highly selective proton exchange membrane with highly ordered, vertically aligned, and subnanosized 1D channels for redox flow batteries. Journal of Power Sources, 406, 2018: 35-41.
[9] X.H. Yan, A. Xu, L. Zeng, P. Gao, T.S. Zhao*, A paper-based microfluidic fuel cell using hydrogen peroxide as fuel and oxidant. Energy Technology, 6, 2018: 140–143. ( "Best of Energy Technology 2018")
Before 2018:
[8] X.H. Yan, P. Gao, G. Zhao, L. Shi, J.B. Xu, T.S. Zhao*, Transport of highly concentrated fuel in direct methanol fuel cells, Applied Thermal Engineering, 126, 2017: 290-295.
[7] X.H. Yan, Ruizhe Wu, J.B. Xu, Zhengtang Luo, T.S. Zhao*, A monolayer graphene - Nafion sandwich membrane for direct methanol fuel cells, J. Power Sources, 311, 2016: 188-194. (ESI高被引论文)
[6] X.H. Yan, H.R. Jiang, G. Zhao, L. Zeng, T.S. Zhao*, Preparations of an inorganic-framework proton exchange nanochannel membrane, J. Power Sources, 326, 2016: 466-475.
[5] X.H. Yan, T.S. Zhao*, L. An, G. Zhao, L. Shi, A direct methanol-hydrogen peroxide fuel cell with a Prussian Blue cathode, Int. J. Hydrogen Energy, 41, 2016: 5135-5140.
[4] X.H. Yan, T.S. Zhao*, G. Zhao, L. An, X.L. Zhou, A hydrophilic-hydrophobic dual-layer microporous layer enabling the improved water management of direct methanol fuel cells operating with neat methanol, J. Power Sources, 294, 2015: 232-238.
[3] X.H. Yan, T.S. Zhao*, L. An, G. Zhao, L. Zeng, A novel cathode architecture with a thin reaction layer alleviates mixed potentials and catalyst poisoning in direct methanol fuel cells, Int. J. Hydrogen Energy, 40, 2015: 16540-16546.
[2] X.H. Yan, T.S. Zhao*, L. An, G. Zhao, L. Zeng, A crack-free and super-hydrophobic cathode micro-porous layer for direct methanol fuel cells, Applied Energy, 138, 2014: 331-336. (ESI高被引论文)
[1] X.H. Yan, T.S. Zhao*, L. An, G. Zhao, L. Zeng, A micro-porous current collector enabling passive direct methanol fuel cells to operate with highly concentrated fuel, Electrochimica Acta, 139, 2014: 7-12.