题目:Surface Design Strategies for Minimizing Interfacial Adhesion
时间:2024年7月17日 9:00-10:30
地点:机械与动力工程学院 F103会议室
邀请人:王京 副教授(智能制造与信息工程研究所)
报告人简介
Kevin Golovin is an Assistant Professor at the University of Toronto in the Department of Mechanical & In-ustrial Engineering. Golovin holds degrees in material science and engineering from Cornell University and the University of Michigan. His research group investigates interfacial mechanics, coatings, surface modifiction, and sustainable methods for achieving solid and liquid repellency. His current research interests in-lude reducing microplastics release, sustainable chemistry, textiles, and smart materials, coatings, and sur-faces. He has published 100+ research articles, mostly in the fields of materials science, fluid mechanics, polymer chemistry, and wettability. Prof. Golovin is an inventor on 11 patents, two of which are actively li-censed. He has received various accolades, including the Eco Innovation Case Competition Grand Prize from Patagonia, and was named an Emerging Leader in Chemical Engineering by the Canadian Society of Chemistry in 2020. In 2023, Golovin received the SGS Early Career Supervision Award from the University of Toronto.
报告摘要
In this talk I will overview several different surface design strategies that can be utilized to manipulate and typically minimize the adhesion of solid foulants. The specific foulant of interest for this talk will be ice, although the design principles apply to any hard fouling substance. I will first discuss the effect of utilizing soft surfaces for minimizing ice adhesion by promoting cavitation of the interface. The ability to drastically lower the adhesion strength will be explored, with particular attention given to scalability and the size of the interface. I will next give an overview of a related surface phenomenon, the buckling of thin, suspended metallic plates. This technology, which we call buckling, elastomer-like anti-icing metallic surfaces or BEAMS, enables ultra-low adhesion strengths without the use of any coatings. Coating-free low adhesion surfaces are quite attractive for austere environments where durability limits the useful lifetime of many polymeric systems. I will finally discuss how the toughness of the interface is often more important than the interfacial strength, and give examples of how to design coatings that exhibit low interfacial toughness with ice.