Selected Publications
Books:
[59] Zhu, X., Investigation on elevated temperature CO/CO2 purification of potassium promoted Mg-Al layered double oxides from H2-rich gas, Beijing: Tsinghua University Press, 2021.4.
[58] Zhu, X.; Shi, Y.; Li, S.; Cai, N.; Anthony, Edward J., System and processes of pre-combustion carbon dioxide capture and separation. In pre-combustion carbon dioxide capture materials, The Royal Society of Chemistry: 2018; pp 281-334.
Review Articles:
[57] Miao, Y.; Wang, Y.; Liu, Y.; Zhu, X.; Li, J.; Yu, L., Research progress on the improving effect of additives on supported amine adsorbents for carbon capture. Chem. Ind. Eng. Prog. 2024, 43 (05), 2739-2759.
[56] Kou, X.; Wang, R.; Du, S.; Xu, Z.; Zhu, X., Heat pump assists in energy transition: Challenges and approaches. DeCarbon 2024, 3, 100033.
[55] Li, S.; Zhu, X.; Wang, D.; Hao, P.; Zhou, F.; Shi, Y.; Wang, R.; Cai, N., Elevated temperature adsorbents for separation applications. EnergyChem 2023, 5 (6), 100113.
[54] Zhang, C.; Zhang, X; Su, T.; Zhang, Y.; Wang, L.; Zhu, X., Modification schemes of efficient sorbents for trace CO2 capture. Renew. Sust. Energ. Rev. 2023, 184, 113473.
[53] Ku, H.; Miao, Y.; Wang, Y.; Chen, X.; Zhu, X.; Lu, H.; Li, J.; Yu, L., Frontier science and challenges on offshore carbon storage. Front. Env. Sci. Eng. 2023, 17 (7), 80.
[52] Wu, J.; Zhu, X.; Yang, F.; Wang, R.; Ge, T., Shaping techniques of adsorbents and their applications in gas separation: a review. J. Mater. Chem. A 2022, 10 (43), 22853-22895.
[51] Zhu, X.; Xie, W.; Wu, J.; Miao, Y.; Xiang, C.; Chen, C.; Ge, B.; Gan, Z.; Yang, F.; Zhang, M.; O'Hare, D.; Li, J.; Ge, T.; Wang, R., Recent advances in direct air capture by adsorption. Chem. Soc. Rev. 2022, 51 (15), 6574-6651.
[50] Zhu, X.; Ge, T.; Wu, J.; Yang, F.; Wang, R., Large-scale applications and challenges of adsorption-based carbon capture technologies. Chinese Science Bulletin 2021, 66 (22), 2861-2877.
[49] Gao, W.; Liang, S.; Wang, R.; Jiang, Q.; Zhang, Y.; Zheng, Q.; Xie, B.; Toe, C. Y.; Zhu, X.; Wang, J.; Huang, L.; Gao, Y.; Wang, Z.; Jo, C.; Wang, Q.; Wang, L.; Liu, Y.; Louis, B.; Scott, J.; Roger, A.; Amal, R.; He, H.; Park, S., Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chem. Soc. Rev. 2020, 49 (23), 8584-8686.
[48] Zhu, X.; Li, S.; Shi, Y.; Cai, N., Recent advances in elevated-temperature pressure swing adsorption for carbon capture and hydrogen production. Prog. Energ. Combust. 2019, 75, 100784.
Research Articles:
2025:
[47] Zhang, D.; Zhang, C.; Zhang, X.; Tian, Y.; Cheng, X.; Zhu, X.; Wang. L., Efficient low-pressure CO2 capture via ZIF-8 modified by deep eutectic solvents. Sep. Purif. Technol. 2025, 353, 128359.
2024:
[46] Shao, Q.; Gan, Z.; Ge, B.; Liu, X.; Chen, C.; O'Hare, D.; Zhu, X., 3D printing of poly(ethyleneimine)-functionalized Mg-Al mixed metal oxide monoliths for direct air capture of CO2. J. Energy. Chem. 2024, 96, 491-500.
[45] Ge, B.; Zhang, M.; Hu, B.; Wu, D.; Zhu, X.; Eicker, U.; Wang, R., Innovative process integrating high temperature heat pump and direct air capture. Appl. Energ. 2024, 355, 122229.
[44] Wu, J.; Wang, K.; Zhao, J.; Chen, Y.; Gan, Z.; Zhu, X.; Wang, R.; Wang, C.; Tong, Y.; Ge, T., A direct air capture rotary adsorber for CO2 enrichment in greenhouses. Device 2024, DOI: 10.1016/j.device.2024.100510.
[43] Wu, J.; Chen, Y.; Xu, Y.; Chen, S.; Lv, H.; Gan, Z.; Zhu, X.; Wang, R.; Wang, C.; Ge, T., Facile synthesis of structured adsorbent with enhanced hydrophobicity and low energy consumption for CO2 capture from the air. Matter 2024, 7 (1), 123-139.
2023:
[42] Wang, Y.; Miao, Y.; Ge, B.; He, Z.; Zhu, X.; Liu, S.; Li, J.; Yu, L., Additives enhancing supported amines performance in CO2 capture from air. SusMat 2023, 3 (3), 416-430.
[41] Ge, B.; Chen, C.; Gan, Z.; Zhu, X.; Miao, Y.; Wang, Y.; Ge, T.; O'Hare, D.; Wang, R., Scalable synthesis of amine-grafted ultrafine layered double hydroxide nanosheets with improved carbon dioxide capture capacity from air. ACS Sustainable Chem. Eng. 2023, 11 (25), 9282-9287.
[40] Miao, Y.; Wang, Y.; He, Z.; Ge, B.; Zhu, X.; Li, J.; Yu, L., Mixed diethanolamine and polyethyleneimine with enhanced CO2 capture capacity from air. Adv. Sci. 2023, 10 (16), 2207253.
[39] Zhang, X.; Zhang, C.; Zhang, D.; Xuan, T.; Gan, Z.; Zhu, X.; Wang, L., PEI@MOF-808 sorbents with high selectively for carbon capture in humid flue gas. CIESC Journal 2023, 74 (10), 4330-4342.
[38] Wang, B.; Li, X.; Zhu, X.; Wang, Y.; Tian, T.; Dai, Y.; Wang, C., An epitrochoidal rotary reactor for solar-driven hydrogen production based on the redox cycling of ceria: Thermodynamic analysis and geometry optimization. Energy 2023, 270, 126833.
2022:
[37] Miao, Y.; Wang, Y.; Zhu, X.; Chen, W.; He, Z.; Yu, L.; Li. J., Minimizing the effect of oxygen on supported polyamine for direct air capture. Sep. Purif. Technol. 2022, 298, 121583.
[36] Wu, J.; Zhu, X.; Chen, Y.; Wang, R.; Ge, T., The analysis and evaluation of direct air capture adsorbents on the material characterization level. Chem. Eng. J. 2022, 450, 137958.
[35] Ling, Y.; Wang, H.; Liu, M.; Wang, B.; Li, S.; Zhu, X.; Shi, Y.; Xia, H.; Guo, K.; Hao, Y.; Jin, H., Sequential separation-driven solar methane reforming for H2 derivation under mild conditions. Energ. Environ. Sci. 2022, 15, 1861-1871.
[34] He, Z.; Wang, Y.; Miao, Y.; Wang, H.; Zhu, X.; Li, J., Mixed polyamines promotes CO2 adsorption from air. J. Environ. Chem. Eng. 2022, 10 (2), 107239.
[33] Yang, F.; Ge, T.; Zhu, X.; Wu, J.; Wang, R., Study on CO2 capture in humid flue gas using amine-modified ZIF-8. Sep. Purif. Technol. 2022, 287, 120535.
[32] Yang, F.; Zhu, X.; Wu, J.; Wang, R.; Ge, T., Kinetics and mechanism analysis of CO2 adsorption on LiX@ZIF-8 with core shell structure. Powder Technol. 2022, 399, 117090.
2021:
[31] Zhu, X.; Lyu, M.; Ge, T.; Wu, J.; Chen, C.; Yang, F.; O'Hare, D.; Wang, R., Modified layered double hydroxides for efficient and reversible carbon dioxide capture from air. Cell Reports Physical Science 2021, 2 (7), 100484.
[30] Zhu, X.; Ge, T; Yang, F.; Wang, R., Design of steam-assisted temperature vacuum-swing adsorption processes for efficient CO2 capture from ambient air. Renew. Sust. Energ. Rev. 2021, 137, 110651.
[29] Zhu, X.; Ge, T.; Yang, F.; Lyu, M.; Chen, C.; O'Hare, D.; Wang, R., Design of amine-functionalized layered double oxide nanosheets with efficient CO2 capture capacities from ambient air, ultrafast kinetics, and promising stability. Available at SSRN: https://ssrn.com/abstract=3811992.
[28] Miao, Y.; He, Z.; Zhu, X.; Izikowitz, D.; Li, J., Operating temperatures affect direct air capture of CO2 in polyamine-loaded mesoporous silica. Chem. Eng. J. 2021, 426, 131875.
[27] Wu, J.; Zhu, X.; Yang, F.; Ge, T.; Wang, R., Easily-synthesized and low-cost amine-functionalized silica sol-coated structured adsorbents for CO2 capture. Chem. Eng. J. 2021, 425, 131409.
[26] Yang, F.; Wu, J.; Zhu, X.; Ge, T.; Wang, R., Enhanced stability and hydrophobicity of LiX@ZIF-8 composite synthesized environmental friendly for CO2 capture in highly humid flue gas. Chem. Eng. J. 2021, 410, 128322.
2020:
[25] Zhu, X.; Ge, T.; Yang, F.; Lyu, M.; Chen, C.; O'Hare, D.; Wang, R., Efficient CO2 capture from ambient air with amine-functionalized Mg–Al mixed metal oxides. J. Mater. Chem. A 2020, 8 (32), 16421-16428.
[24] Zhu, X.; Chen, C.; Shi, Y.; O'Hare, D.; Cai, N., Aqueous miscible organic-layered double hydroxides with improved CO2 adsorption capacity. Adsorption 2020, 26 (7), 1127-1135.
[23] Zhu, X.; Hao, P.; Shi, Y.; Li, S.; Cai, N., Application of elevated temperature pressure swing adsorption in hydrogen production from syngas. Adsorption 2020, 26 (7): 1227-1237.
[22] Khalkhali, M.; Zhu, X.; Shi, Y.; Liu, Q.; Choi, P.; Zhang, H., Structure and CO2 physisorption capacity of hydrotalcite-derived oxide. J. CO2 Util. 2020, 36, 64-75.
[21] Liu, Z.; Hao, P.; Li, S.; Zhu, X.; Shi, Y.; Cai, N., Simulation and energy consumption comparison of gas purification system based on elevated temperature pressure swing adsorption in ammonia synthetic system. Adsorption 2020, 26 (7), 1239-1252.
[20] Hao, P.; Zhu, X.; Li, S.; Shi, Y.; Cai, N., Efficiency analysis of warm gas clean up in integrated gasification fuel cell (IGFC) system. Research Square 2020, DOI: 10.21203/rs.3.rs-42837/v1.
2019:
[19] Zhu, X.; Chen, C.; Wang, Q.; Shi, Y.; O'Hare, D.; Cai, N., Roles for K2CO3 doping on elevated temperature CO2 adsorption of potassium promoted layered double oxides. Chem. Eng. J. 2019, 366, 181-191.
[18] Zhu, X.; Chen, C.; Suo, H.; Wang, Q.; Shi, Y.; O'Hare, D.; Cai, N., Synthesis of elevated temperature CO2 adsorbents from aqueous miscible organic-layered double hydroxides. Energy 2019, 167, 960-969.
[17] Chen, Y.; Shi, Y.; Zhu, X.; Cai, N., Impedance characterization of elevated temperature carbon dioxide adsorption process on potassium-modified hydrotalcite. Sep. Purif. Technol. 2019, 212, 670-675.
[16] Hao, P.; Shi, Y.; Li, S.; Zhu, X.; Cai, N., Adsorbent characteristic regulation and performance optimization for pressure swing adsorption via temperature elevation. Energ. Fuel. 2019, 33 (3), 1767-1773.
[15] Li, S.; Hao, P.; Zhu, X.; Shi, Y.; Cai, N.; Li, S.; Jiang, H., On-site demonstration of an elevated temperature hydrogen clean-up unit for fuel cell applications. Adsorption 2019, 25 (8), 1683-1693.
2018:
[14] Zhu, X.; Shi, Y.; Li, S.; Cai, N., Two-train elevated-temperature pressure swing adsorption for high-purity hydrogen production. Appl. Energ. 2018, 229, 1061-71.
[13] Zhu, X.; Shi, Y.; Li, S.; Cai, N., Elevated temperature pressure swing adsorption process for reactive separation of CO/CO2 in H2-rich gas. Int. J. Hydrogen Energ. 2018, 43 (29), 13305-17.
[12] Hao, P.; Shi, Y.; Li, S.; Zhu, X.; Cai, N., Correlations between adsorbent characteristics and the performance of pressure swing adsorption separation process. Fuel 2018, 230, 9-17.
2017:
[11] Zhu, X.; Shi, Y.; Cai, N., CO2 residual concentration of potassium-promoted hydrotalcite for deep CO/CO2 purification in H2-rich gas. J. Energy Chem. 2017, 26 (5), 956-64.
[10] Zhu, X.; Shi, Y.; Cai, N., High-pressure carbon dioxide adsorption kinetics of potassium-modified hydrotalcite at elevated temperature. Fuel 2017, 207, 579-90.
[9] Zhu, X.; Shi, Y.; Cai, N., Experimental investigation on a new method for CO deep purification in coal-derived syngas. Journal of Engineering Thermophysics 2017, 38 (2), 421-427.
[8] Zhu, X.; Shi, Y.; Cai, N., Investigation on the trace amount of released CO in sorption enhanced water gas shift reaction applied in pre-combustion CO2 capture and high purity H2 production. Energy Procedia 2017, 114, 2525-2536.
2016:
[7] Zhu, X.; Shi, Y.; Cai, N., Integrated gasification combined cycle with carbon dioxide capture by elevated temperature pressure swing adsorption. Appl. Energ. 2016, 176, 196-208.
[6] Zhu, X.; Shi, Y.; Cai, N., Characterization on trace carbon monoxide leakage in high purity hydrogen in sorption enhanced water gas shifting process. Int. J. Hydrogen Energ. 2016, 41 (40), 18050-61.
[5] Xu, K.; Shi, Y.; Zhai, Z.; Xu, Q.; Zhu, X.; Li, S., Study on CO2 capture performance by potassium-promoted MgAl-hydrotalcite adsorbent. Proceedings of the CSEE 2016, 36 (23), 6454-6459.
2015:
[4] Zhu, X.; Wang, Q.; Shi, Y.; Cai, N., Layered double oxide/activated carbon-based composite adsorbent for elevated temperature H2/CO2 separation. Int. J. Hydrogen Energ. 2015, 40 (30), 9244-53.
[3] Li, S.; Shi, Y.; Yang, Y.; Zhu, X.; Cai, N., Experimental study of CO2 capacity and mechanical strength of K-promoted hydrotalcite adsorbent. Journal of Engineering Thermophysics 2015, 36 (7), 1606-1610.
2014:
[2] Zhu, X.; Shi, Y.; Cai, N.; Li, S.; Yang, Y., Techno-economic evaluation of an elevated temperature pressure swing adsorption process in a 540 MW IGCC power plant with CO2 capture. Energy Procedia 2014, 63, 2016-2022.
[1] Zhu, X.; Shi, Y.; Cai, N., Investigation on the elevated temperature CO2 adsorption of modified activated carbon. Conference of Chinese Society of Engineering Thermophysics, Xi'an, 2014.